

 Navigation

 	
 index

 	
 next |

 	Etcaetera 1 commit documentation

Welcome to Etcaetera’s documentation!

Contents:

	Etcaetera
	What?

	Why?

	Installation

	Usage

	Contribute

	License

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2014-01-11)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Oleiade.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Etcaetera 1 commit documentation

Etcaetera

[image: https://badge.fury.io/py/etcaetera.png]
 [http://badge.fury.io/py/etcaetera][image: https://travis-ci.org/oleiade/etcaetera.png?branch=master]
 [https://travis-ci.org/oleiade/etcaetera][image: https://pypip.in/d/etcaetera/badge.png]
 [https://crate.io/packages/etcaetera?version=latest]
What?

Etcaetera helps you loading your application configuration from multiple sources in a simple way.

It exposes a single Config object which you add prioritized sources adapters to (env, files, cmdline, modules...).

Once you call load method over it: your settings are loaded from your adapters in order, all your configuration is stored in the Config object.

You’re done.

Why?

Managing a large application configuration sources can be a pain in the neck.

Command line, files, system environment, modules, a lot of mixed sources can provide you with the settings you seek.

They are all accessed in different ways, and establishing a merging strategy of these differents sources can sometimes look like impossible.

Etcaetera provides you a simple and unified way to handle all the complexity in a single place.

Installation

With pip

$ pip install etcaetera

With setuptools

$ git clone git@github.com:oleiade/etcaetera
$ cd etcaetera
$ python setup.py install

Usage

Dive

A real world example worths it all

>>> from etcaetera.config import Config
>>> from etcaetera.adapters import Defaults, Overrides, Env, File

Let's create a new configuration object
>>> config = Config()

And create a bunch of adapters
>>> env_adapter = Env(keys=["MY_FIRST_SETTING", "MY_SECOND_SETTING"])
>>> python_file_adapter = File('/etc/my/python/settings.py')
>>> json_file_adapter = File('/etc/my_json_settings.json')
>>> module_adapter = Module(os)
>>> overrides = Overrides({"MY_FIRST_SETTING": "my forced value"})

Let's register them
>>> config.register([env_adapter, python_file_adapter, json_file_adapter, module_adapter, overrides])

Load configuration
>>> config.load()

And that's it
>>> print config
{
 "MY_FIRST_SETTING": "my forced value",
 "MY_SECOND_SETTING": "my second value",
 "FIRST_YAML_SETTING": "first yaml setting value found in yaml settings",
 "FIRST_JSON_SETTING": "first json setting value found in json settings",
 ...
}

Config object

The config object is the central place for your whole application settings. It will load your adapters
in the order you’ve registered them, and update itself using it’s data.

Please note that Defaults adapter will always be loaded first, and Overrides will always be loaded last.

>>> from etcaetera.config import Config

You can provide defaults to Config at initialization, whether as a Defaults object,
or as a dict.
>>> config = Config({"abc": "123"})

>>> print config
{
 "ABC": "123 # every Config keys will be automatically uppercased
}

When you register adapters to it, they are not immediately evaluated.
>>> config.register(Env(["USER", "PWD"])
>>> assert "USER" not in config
True
>>> assert "PWD" not in config
True
>>> config.register(Overrides({"abc": "do re mi"})
>>> assert config["ABC"] != "do re mi"
True

Whenever you call load, adapters are evaluated and your config
values are updated accordingly
>>> config.load()
>>> print config
{
 "ABC": "do re mi",
 "USER": "your user",
 "PWD": "/current/working/directory"
}

Adapters

Adapters are interfaces to configuration sources. They load settings from their custom source type,
and expose them as a normalized dict to Config objects.

	Right now, etcaetera provides the following adapters:

	
	Defaults: sets some default settings

	Overrides: overrides the config settings values

	Env: extracts configuration values from system environment

	File: extracts configuration values from a file. Accepted format are: json, yaml, python module file (see File adapter section for more details)

	Module: extracts configuration values from a python module. Like in django, only uppercased variables will be matched

	In a close future, etcaetera may provide adapters for:

	
	Argv argparse format support: would load settings from an argparser parser attributes

	File ini format support: would load settings from an ini file

Defaults adapter

Defaults adapter provides your configuration object with default values.
It will always be evaluated first when Config.load method is called.
You can whether provide defaults values to Config as a Defaults object
or as a dictionary.

>>> from etcaetera.adapter import Defaults

Defaults adapter provides default configuration settings
>>> defaults = Defaults({"ABC": "123"})
>>> config = Config(defaults)

>>> print config
{
 "ABC": "123"
}

Overrides adapter

Overrides adapter will override Config object values with it’s own.
It will always be evaluated last when Config.load method is called.

>>> from etcaetera.adapter import Overrides

Overrides adapter helps you setting overriding configuration settings.
When registered over a Config objects, it will always be evaluated last.
Use it if you wish to force some config values.
>>> overrides_adapter = Overrides({"USER": "overrided value"})
>>> config = Config({
 "USER": "default_value",
 "FIRST_SETTING": "first setting value"
})

>>> config.register(overrides_default)
>>> config.load()

>>> print config
{
 "USER": "overrided user",
 "FIRST_SETTING": "first setting value"
}

Env adapter

Env adapter will load settings from your system environement.
It should be provided with a list of keys to fetch. If you don’t provide
it yourself, the Config object it’s registered to will automatically
provide it’s own.

>>> from etcaetera.adapter import Env

You can provide keys to be fetched by the adapter at construction
>>> env = Env(keys=["USER", "PATH"])

Or whenever you call load over it. They will be merged
with those provided at initialization.
>>> env.load(keys=["PWD"])

>>> print env.data
{
 "USER": "user extracted from environment",
 "PATH": "path extracted from environment",
 "PWD": "pwd extracted from environment"
}

File adapter

File adapter will load configuration settings from a file.
Supported formats are json, yaml and python module files. Every key-value pairs
stored in the pointed file will be load in the Config object it is registered to.

Python module files

Python module files should be in the same format as Django settings files. Only uppercased variables
will be loaded. Any python data structures are allowed to be used.

Here’s an example

Given the following settings.py file

$ cat /my/settings.py
FIRST_SETTING = 123
SECOND_SETTING = "this is the second value"
THIRD_SETTING = {"easy as": "do re mi"}
ignored_value = "this will be ignore"

File adapter output will look like this:

>>> from etcaetera.adapter import File

>>> file = File('/my/settings.py')
>>> file.load()

>>> print file.data
{
 "FIRST_SETTING": 123,
 "SECOND_SETTING": "this is the second value",
 "THIRD_SETTING": {"easy as": "do re mi"}
}

Serialized files (aka json and yaml)

Given the following json file content:

$ cat /my/json/file.json
{
 "FIRST_SETTING": "first json file extracted setting",
 "SECOND_SETTING": "second json file extracted setting"
}

File adapter output will look like this:

>>> from etcaetera.adapter import File

File adapter awaits on a file path at construction.
All you've gotta do then, is letting the magic happen
>>> file = File('/my/json/file.json')
>>> file.load()

>>> print file.data
{
 "FIRST_SETTING": "first json file extracted setting",
 "SECOND_SETTING": "second json file extracted setting"
}

Module adapter

Module adapter will load settings from a python module. It emulates the django
settings module loading behavior, in that every uppercased locals to the module
will be matched.

Given a mymodule.settings module looking this:

MY_FIRST_SETTING = 123
MY_SECOND_SETTING = "abc"

Loaded module data will look like this:

>>> from etcaetera.adapter import Module

Will extract every uppercased local variables of the module
>>> module = Module(mymodule.settings)
>>> module.load()

>>> print module.data
{
 MY_FIRST_SETTING = 123
 MY_SECOND_SETTING = "abc"
}

Contribute

Please read the Contributing [https://github.com/oleiade/etcaetera/blob/develop/CONTRIBUTING.rst] instructions

For the lazy, here’s a sum up:

	Found a bug? Wanna add a feature? Check for open issues or open a fresh issue to start a discussion about it.

	Fork the repository, and start making your changes

	Write some tests showing you fixed the actual bug or your feature works as expected

	Fasten your seatbelt, and send a pull request to the develop branch.

License

The MIT License (MIT)

Copyright (c) 2014 Théo Crevon

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Copyright 2014, Oleiade.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Etcaetera 1 commit documentation

Installation

At the command line:

$ easy_install etcaetera

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv etcaetera
$ pip install etcaetera

 Copyright 2014, Oleiade.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Etcaetera 1 commit documentation

Usage

To use Etcaetera in a project:

import etcaetera

 Copyright 2014, Oleiade.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Etcaetera 1 commit documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/oleiade/etcaetera/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Etcaetera could always use more documentation, whether as part of the
official Etcaetera docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/oleiade/etcaetera/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up etcaetera for local development.

	Fork the etcaetera repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/etcaetera.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv etcaetera
$ cd etcaetera/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 etcaetera tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request to the develop branch through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/oleiade/etcaetera/pull_requests
and make sure that the tests pass for all supported Python versions.

 Copyright 2014, Oleiade.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Etcaetera 1 commit documentation

Credits

Development Lead

	Oleiade <tcrevon@gmail.com>

Contributors

None yet. Why not be the first?

 Copyright 2014, Oleiade.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	Etcaetera 1 commit documentation

History

0.1.0 (2014-01-11)

	First release on PyPI.

 Copyright 2014, Oleiade.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	Etcaetera 1 commit documentation

Index

 Copyright 2014, Oleiade.
 Created using Sphinx 1.2.

 _static/ajax-loader.gif

_static/up.png

_static/file.png

_static/up-pressed.png

_static/comment.png

_static/down.png

search.html

 Navigation

 		
 index

 		Etcaetera 1 commit documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Oleiade.
 Created using Sphinx 1.2.

_static/plus.png

_static/down-pressed.png

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

